
Adjustably Autonomous Multi-agent Plan Execution with an 
Internal Spacecraft Free-Flying Robot Prototype 

 
Gregory A. Dorais and Keith Nicewarner* 

NASA Ames Research Center 
MS 269-2, Moffett Field, CA, 94035, USA 

gdorais@arc.nasa.gov, knicewarner@arc.nasa.gov 
 

 
Keywords: robot planning and execution, applications of 
planning and scheduling, reactive planning, mixed-
initiative planning, multi-agent planning, adjustable 
autonomy 

Abstract* 
We present a model-based, adjustably autonomous multi-
agent architecture with monitoring, planning, diagnosis, and 
execution elements. We discuss an internal spacecraft free-
flying robot prototype controlled by an implementation of 
this architecture and a ground test facility used for 
development. In addition, we discuss a simplified 
environment control life support system for the spacecraft 
domain also controlled by an implementation of this 
architecture. We discuss adjustable autonomy and how it 
applies to this architecture and its user interface, which 
provides the user situation awareness of both autonomous 
systems and enables the user to dynamically edit the plans 
prior to and during execution as well as control these agents 
at various levels of autonomy. This interface also permits the 
agents to query the user or request the user to perform tasks 
to help achieve the commanded goals. We describe a sample 
scenario where these two agents and a human interact to 
cooperatively detect, diagnose and recover from a simulated 
spacecraft fault, and conclude by describing the individual 
components in the autonomy architecture. 

Introduction 
Spacecraft mobile robots offer the potential to increase the 
capability, productivity, and duration of space missions 
while decreasing mission risk and cost. They can perform a 
number of functions, both inside and outside the spacecraft, 
from relatively simple tasks, such as remote sensing and 
providing crew support, to more complex tasks, such as 
performing maintenance and in-situ construction.  

Onboard planning and robust plan execution are key 
technologies necessary to robustly achieve increasingly 
ambitious mission goals for longer time periods with less 
ground support than traditionally required. The “Ambitious 
Spacecraft” proposed in [1] represents a simplified domain 
that captures several important aspects of long-term 
planning applicable to space-based observatories (either 
orbiting or fly-by) where the dynamics of the environment 
and the interaction with human operators occur infrequently. 

In this paper we focus on a different domain where a space-
based robot is an active assistant to a human astronaut, 
ground personnel, or other onboard autonomous systems. 

                                                
* QSS Group, Inc. 

As with the ambitious spacecraft, instrument and motion 
requirements, as well as the need to optimize time and 
scarce resources, are still present. However, the robot must 
be able to deal with the variability of an engineered 
environment occupied by humans and has to be able to 
quickly and safely modify its plans as needed. 

In a research effort to study how free-flying mobile robots 
can support operations inside manned spacecraft, in 
particular the International Space Station (ISS), NASA is 
developing a series of prototypes, called Personal Satellite 
Assistants (PSAs), each having increased remote sensing 
and navigation capabilities [2]. Three of these robots are 
being operated in ground test facilities and the fourth is 
under development.  

One of the predominant challenges to deploying PSAs is to 
reduce the need for direct operator interaction. 
Teleoperation is often not practical due to the 
communication latencies incurred because of the distances 
involved and in many cases a crewmember would directly 
perform a task rather than teleoperate a robot to do it. We 
have developed an adjustably autonomous control system, 
based on the IDEA architecture [3], that integrates a 
constraint-based plan database (EUROPA) [4], deliberative 
planner, reactive planner, path planner, and a diagnosis 
engine (Livingstone 2) [5]. We have used this control 
system to command PSAs in simulation as well as the 
physical prototypes in test facilities.  

This paper briefly presents a PSA prototype and one of the 
test facilities. We discuss adjustable autonomy and the 
adjustably autonomous control system and its user interface. 
We conclude by examining a test scenario where a PSA, a 
simulated environmental control life support system, and a 
human cooperatively detect, diagnose and recover from a 
simulated spacecraft fault. 

PSA Prototype 
A 6-DOF PSA Model 2 prototype was developed and is 
shown in Figure 1. The Model 2 is 12” in diameter (the 
targeted flight model diameter is 8”) and capable of position 
and velocity estimation and motion in 6-DOF (X, Y, Z, yaw, 
pitch, roll). 6-DOF position and velocity estimation is 
achieved using multiple stereo-pair cameras (between 1-4 
pairs). Propulsion and attitude control in 6-DOF are 
achieved using 6 ducted-fan pairs. 



Figure 1 - PSA Model 2 
 

The Model 2 has an LCD located at the center of its front 
lower hemisphere. The LCD can be used to display data 
generated locally as well as data received via its wireless 
network, e.g., text terminals, images, schematics, videos, 
and teleconferencing. The location of these and additional 
components are depicted in Figure 2. 
 

Figure 2 - PSA Model 2 Annotated Drawing 

Micro-gravity Test Facility 
To test the Model 2 on Earth, a micro-gravity test facility 
was developed. The facility is roughly 36’ long, 13’ wide, 
and 8’ high. It contains a full-scale mockup of the ISS U.S. 
Lab module. The facility consists of a 3-DOF (X,Y,Z) 
bridge-crane-like mechanism that supports a passive gimbal 
that mounts the PSA, which permits free spinning in yaw 
and pitch. The PSA Model 2 is shown in the facility in 
Figure 3.  

The facility can be operated in several modes: position, 
velocity, force, and follow. Follow mode is the most 
significant and enables us to simulate micro-gravity. 

Figure 3 - PSA Model 2 in Micro-gravity Test Facility 
 

Sensors located on the trolley and gimbal sense translation 
forces (X,Y,Z) acting on or generated by the gimbal 
payload. These sensor signals are interpreted by the crane 
motors as force commands and move the payload 
accordingly. The Z-axis signal is offset to cancel the force 
of gravity. The result is that the payload “floats” within the 
facility, moving at a relatively constant velocity, and 
accelerates appropriately when the payload is subjected to a 
force. When the PSA Model 2 is the payload, its fan power 
is sufficient to propel it throughout the facility as if it was in 
a micro-gravity environment. 

Adjustable Autonomy 
One of the challenges we face in designing the autonomous 
control system for this robot is to enable the user to control 
the robot, or in some cases to be instructed, at the command 
level most effective to accomplish the desired tasks. For 
some tasks, the system should be able to run without user 
intervention. For other tasks, direct control of the robots’ 
velocity and position is desired. For many tasks, what is 
desired is some operation point between these two extremes. 
We refer to the capability to dynamically select an operation 
point between these two extremes as adjustable autonomy. 
The four areas of a system that affect how “adjustable” its 
autonomy is are: data reporting, decision-making, sensing, 
and actuation. 

Data Reporting 
The goal of data reporting is to provide relevant information 
that provides the user situation awareness (particularly if the 
user had not been monitoring the system) of the 
environment, the robot, as well as the autonomous system, 
in order to understand the system behavior, predict its future 
behavior, and assess how the user may change its behavior. 
Too much data can overwhelm the user and make it difficult 
to find the relevant information. However, if too little data is 
provided, the user will not be able to properly assess and 
command the system. Moreover, no one level of data is 
adequate. In some cases more is needed and other cases less 
is better. In the PSA autonomous control system, data is 
provided to the user by four methods: 

Speaker

Gimbal 
Mount

Microphone

IR Sensors

Temp & 
Humidity 
Sensor

LED Spot 
Light

Vent

Stereo 
Camera

Stereo 
Camera

Video 
Display

Propulsion 
Fan Ducts

Speaker

Gimbal 
Mount

Microphone

IR Sensors

Temp & 
Humidity 
Sensor

LED Spot 
Light

Vent

Stereo 
Camera

Stereo 
Camera

Video 
Display

Propulsion 
Fan Ducts



real-time displays—including multiple onboard camera 
views, a third-person simulated perspective of the PSA in its 
environment, and sensor signals graphed over time.  

synthesized spoken language—it has the advantage of 
drawing the user’s attention but generally must be used 
sparingly. The user can select which messages should be 
announced.  

textual messages and an event log—this also can be 
controlled by the user selecting which messages can be sent 
and by selecting a log level for events.  

the PSA itself—including its position, motion, and its LCD 
display. We are in the process of adding a laser pointer to 
the PSA so it can be used to point for the benefit of the user. 

Decision-making 
Decision-making is essentially the ability for the user to 
command the system. Currently, there are five methods to 
command the system: 

teleoperation—a GUI and two 3DOF joysticks (one for 
controlling translation and the other for orientation) enable 
direct control. Automatic obstacle avoidance and station 
keeping is supported. 

plan editing—the plan may be edited even while it is being 
executed. Decision types include: goal insertion & removal, 
goal schedule restriction & relaxation (undo restriction), and 
goal argument restriction & relaxation.  

decision assignment—the user can determine which 
decisions can be made by the autonomous system and which 
the user must make. Each decision can be set to one of the 
following levels:  

• prevent command – the command is not permitted 

• suppress: make decision without any notification 

• exec notify: make decision and send user message when 
executed 

• plan notify: make decision and send user message when 
planned and when executed 

• request approval - default positive: ask user permission, 
no decision prior to timeout interpreted as approval. 

• request approval - default negative: ask user permission, 
no decision prior to timeout interpreted as denial. 

• prevent decision - permit command 
 

spoken language commands—currently this method is 
limited, but there are situations where it is useful since the 
user need not be near the GUI and it enables hands-free 
commanding. 

direct robot interaction—includes physically moving the 
robot, directing it to avoid or follow the user or an object, or 
commanding it using human gestures it recognizes (not yet 
implemented). 

Sensing 
The sensing area of an adjustable autonomous system refers 
to the ability of the system to use a person as virtual sensor 
or for the person to otherwise alter the system’s perceived 

state of the environment or itself. For example, the system 
may decide to ask a person if a hatch is open rather than 
making the trip to check. Similarly, the PSA may check if 
the hatch is open by attempting to pass through it and infer 
that it is closed because it was blocked. However, the hatch 
may be open, but was blocked because a person was there. 
The person could correct the incorrect inference made by 
the PSA by informing the system that the hatch was open 
thus permitting it to generate plans than involve passing 
through the hatch. 

Actuation 
Like the sensing area, the actuation area refers to those 
actions that can be done by a user. Examples of such actions 
are requesting the user to open a closed hatch or performing 
a maintenance task on the PSA.  

Our hypothesis is that by enabling the user to vary the level 
of control in the four areas of data reporting, decision-
making, sensing, and actuation over an extended period of 
operation, the system can be effective at cooperatively 
achieving a wide-variety of tasks. 

Sample Multi-Agent Mission Test Scenario 
In this section we discuss a scenario, summarized in Figure 
4, in which the PSA, an autonomous Environmental Control 
Life Support System (ECLSS) agent, and a crewmember 
participate in the diagnosis of and recovery from an ISS 
module fault. In this scenario, ECLSS is autonomously 
controlled by a high-level autonomous system similar to the 
one used by the PSA as shown in Figure 5 to be discussed in 
the following section (the main difference is that ECLSS 
does not use a path planner). The scenario has two 
variations depending on the cause of the initially sensed 
anomaly. This scenario is used to demonstrate: 

• Integrated Vehicle Health Management 

• Cooperative multi-agent planning and execution 

• Generation and execution of a near-optimal 6-DOF route 
plans 

• Stereo vision-based 6-DOF localization and map 
registration 
 

The scenario begins with the PSA station keeping at its dock 
when a fixed temperature sensor at rack 5, locker 1 in the 
ISS US Lab module signals a high temperature to the 
ECLSS. The ECLSS attempts to diagnose the problem and 
is not able to determine whether the sensor is defective or if 
the station system is actually overheating without additional 
information. In our case, we have specified that each case is 
equally likely. So in order to disambiguate the system state, 
ECLSS commands the PSA agent to go to the fixed sensor 
location and verify the temperature at that location by 
sending the PSA agent a sense-at-location goal. The PSA 
agent then reactively deliberates (i.e., the reactive planner 
calls the deliberative planner in response to the new goal). 
The deliberative planner decomposes the goal into a move-
to subgoal followed by a subgoal to maintain position while 
the temperature is sensed. The move-to subgoal then 
decomposes into a path-planning subgoal followed by an 



execute path subgoal. All of these goals are flexibly 
scheduled. When the path-planning goal is executed, a path 
from the current location to the desired location is 
generated, where a path consists of a sequence of waypoints 
that avoids known obstacles and no-fly zones. When the 
path is scheduled to execute, the PSA agent sends it to the 
PSA subsystem, which executes each waypoint. As needed, 
the trajectory between waypoints is dynamically changed to 
avoid obstacles detected en route. When it arrives at the 
destination, the PSA subsystem confirms that the path was 
completed, or in a failure case notifies the PSA agent that 
the path cannot be achieved. PSA agent then commands the 
PSA subsystem to station keep for a period while the PSA 
measures the temperature. After that period, the top-level 
PSA agent sense-at-location goal completes by returning the 
sensed temperature to ECLSS. ECLSS then compares the 
two sensor readings. The two cases where they agree or 
disagree are listed below. The preceding activity is 
summarized by steps 1-5 in Figure 4. 

If the PSA and ECLSS temperature sensors disagree, the 
ECLSS state estimator infers that the fixed temperature 
sensor has failed and requests that a crewmember repair it 
by sending a message to the ECLSS operator user interface 
requesting the repair and waits for confirmation that the 
crewmember has repaired the sensor. When the 
crewmember confirms, the fixed sensor value returns to 
nominal. Meanwhile, ECLSS tells PSA to measure the 
temperature again at the same location and compares the 
return value to the value read from the fixed sensor. Since 
they now agree, the ECLSS state estimator infers that the 
fixed sensor is healthy and the PSA is commanded to its 
dock completing the scenario (steps 6a-11a). 

However, if the PSA and ECLSS temperature sensors agree, 
then the ECLSS state estimator infers that a nearby locker is 
overheating, but which one is unknown. ECLSS gives a 
goal to the PSA agent to direct it to locate the source of the 

heat. The PSA agent decomposes this goal to send a 
command to the PSA subsystem that causes it to execute its 
heat source seeking behavior. This behavior has the PSA 
first spin fully around, scanning the environment with its 
thermal imager. Once the scan is complete, the PSA points 
to the largest magnitude heat source and moves toward it. 
When the PSA gets as close as it can to the heat source, the 
PSA agent completes the sense-at-location goal by returning 
the location and temperature measurement to ECLSS. In our 
case, the heat source is actually in a locker in a neighboring 
rack, which the ECLSS state estimator infers. ECLSS then 
commands the system operating in the locker to power-off, 
which reduces the (simulated) heat in the area. The ECLSS 
fixed sensor then reads a nominal temperature. ECLSS 
sends the PSA agent a goal to measure the temperature 
again to verify the temperature is nominal. The PSA 
measures the temperature and returns the temperature to 
ECLSS. ECLSS infers that the locker temperature is 
nominal and releases the PSA from further requests. The 
PSA then returns to its dock completing the scenario (steps 
6b-14b). 

PSA Autonomy Framework 
An autonomy framework has been developed and is 
depicted in Figure 5 [6]. Care was taken to design and 
implement this framework so that it is applicable to a wide 
range of free-flying vehicles.  

The user can issue commands to the PSA through the Crew 
GUI. Also, the user can issue verbal commands to the PSA 
and receive spoken notifications generated by the PSA via a 
headset. Other external systems, including other PSAs, can 
directly and simultaneously issue commands to the PSA, 
which will attempt to resolve any conflicts. Finally, the PSA 
itself can generate commands in keeping with its high-level 
goals and periodic task schedule.  

Step Agent Scenario Step Description 
1 ECLSS Detects a high heat signal from a fixed ISS node sensor. Fixed sensor health or heat source unknown. 
2 ECLSS Commands PSA to verify the temperature at that location 
3 PSA Generates plan upon receipt of the command to go to the fixed sensor location and measure temperature 
4 PSA Starts executing plan 
5 PSA Moves to fixed sensor and begins collecting temperature data and sending it to ECLSS 

Variation A: Fixed rack sensor failed high, rack lockers nominal 
6a ECLSS Determines fixed sensor is faulty and uses PSA sensor as temporary sensor.  
7a ECLSS Requests crewmember to repair sensor 
8a Crewmember Repairs fixed sensor and notifies ECLSS 
9a ECLSS Requests PSA to measure temperature to validate fixed sensor, which signals actual temperature  
10a ECLSS Infers problem resolved and commands PSA to return to docking bay 
11a PSA Returns to docking locker recharge 

Variation B: Fixed rack sensor healthy, one rack locker overheating 
6b ECLSS Determines fixed sensor is accurate.  
7b ECLSS Commands PSA to locate heat source. 
8b PSA Searches region for heat source and determines maximum heat is at location of locker X.  
9b PSA Sends locker location and its temperature to ECLSS. 
10b ECLSS Determines locker can be powered down and turns off power to locker. Temperature declines. 
11b ECLSS Requests PSA to verify temperature has declined 
12b PSA Sends locker temperature to ECLSS 
13b ECLSS Releases PSA to perform previously scheduled tasks 
14b PSA Returns to docking locker to recharge 

 

Figure 4 – Sample PSA Test Mission Scenario 



The PSA autonomy framework is comprised of a number of 
control elements, which are represented as boxes in Figure 
5. The current implementation is distributed over three 
processors, as indicated by the dashed boxes, which are 
connected by wireless Ethernet. Each of these three 
subsystems and the control elements it contains is briefly 
discussed below. Note that the framework design and many 
of its elements draw their heritage from the model-based, 
goal-achieving, temporally-flexible NASA “Remote Agent” 
autonomy software flight-validated on the Deep Space One 
spacecraft in 1999 [7]. 

Onboard Control System Elements 
The onboard control system is responsible for sensing, 
sensor analysis (e.g., object and fault recognition), state 
estimation (e.g., position estimation), hardware actuation 
(e.g., motor currents), and real-time reactive control (e.g., 
obstacle avoidance), generally with sub-second latency. 
This system is designed to enable local operation of the PSA 
even when communication with the off-board system is lost, 
which may occur during a flight emergency. 

 

Local Path Planner—generates a trajectory between two 
waypoints that takes into account locally sensed obstacles 
When given a third waypoint, the trajectory passes through 
the second waypoint without stopping. The local path 
planner performs limited trajectory repair in case of a path 
plan failure, e.g., blocked path. 

High-level controllers—translates the trajectory into a 
sequence of 6-DOF (position, velocity, and acceleration) 
setpoints for the low-level controllers.  

Low-level controllers—translates the setpoints into motor 
force commands to achieve the specified PSA motion.  

PSA Hardware—the sensors and actuators with their 
associated drivers. These include fan motor controllers, 
stereo cameras, environment sensors, proximity sensors, and 
an LCD. 

Monitors—signal processing loops that abstract the data 
generated by the sensors. They run from being as simple as 
indicating that a proximity sensor has triggered to 
continually calculating 6-DOF positions and velocities by 
fusing the stereo camera, 6-DOF inertial sensors, and 
proximity sensors. 

Communication Manager—responsible for managing 
message traffic and executing appropriate message handlers. 
Serves same role in both off-board systems. 

Off-board Autonomy System 
The off-board autonomy system is responsible for high-level 
autonomous control including inter-agent communication 
and coordination (including humans), goal management, 
decomposing high-level tasks (planning) into commands 
that can be executed by the onboard control system, e.g., 
waypoint commands, constraining task times (scheduling), 
command sequencing (plan execution), and reasoning about 
sensor data provided by the onboard control system, e.g., for 
diagnosis, and for plan repair, e.g., onboard control system 
is unable to achieve a waypoint. Architecturally, this system 
could be integrated onboard the PSA.  

High-level
Controllers

Local Path 
Planner

Low-level
Controllers

PSA 
Hardware 
(w/sensors 
& display)

Environment

Monitors
(w/vision 
system)

Crew GUI

physics

signals

Onboard
Control
System
(PSA)

user(s)
Off-board

User Interface
System
(Laptop)

Teleoperation 
Manager

wireless 
headset

Comm. 
Manager

Plan 
Runner

Reactive 
Planner

Plan 
Database

Deliberative
Planner

Declarative 
Models 

Goal/Dialogue
Manager

e.g., 
trajectory

Off-board 
Autonomy System 

(Server)
Comm. 

Manager

Other Systems

Comm. Manager

System

Comm. Manager

ExpertExpert
Plan Experts

e.g.,Path Estimator

Voice Recognition/ 
Synthesis

Path 
Planner

Environment
Map

State 
Estimator

wireless 
Ethernet

e.g., commands, 
telemetry

e.g., “measure 
temperature at rack 5”

e.g., waypoint

e.g., direction 
vector

e.g., velocities

e.g., motor 
currents

e.g.,
location

High-level
Controllers

Local Path 
Planner

Low-level
Controllers

PSA 
Hardware 
(w/sensors 
& display)

Environment

Monitors
(w/vision 
system)

Crew GUI

physics

signals

Onboard
Control
System
(PSA)

user(s)
Off-board

User Interface
System
(Laptop)

Teleoperation 
Manager

wireless 
headset

Comm. 
Manager

Plan 
Runner

Reactive 
Planner

Plan 
Database

Deliberative
Planner

Declarative 
Models 

Goal/Dialogue
Manager

e.g., 
trajectory

Off-board 
Autonomy System 

(Server)
Comm. 

Manager

Other Systems

Comm. Manager

System

Comm. Manager

ExpertExpert
Plan Experts

e.g.,Path Estimator

Voice Recognition/ 
Synthesis

Path 
Planner

Environment
Map

State 
Estimator

wireless 
Ethernet

e.g., commands, 
telemetry

e.g., “measure 
temperature at rack 5”

e.g., waypoint

e.g., direction 
vector

e.g., velocities

e.g., motor 
currents

e.g.,
location

 
Figure 5 - PSA Autonomy Framework 



Declarative Models—contains the library of constraints used 
by the Plan Database that define a set of coordinated state 
machines. A constraint may simply specify that Task A 
must precede Task B by at least 10 seconds but not more 
than 20 seconds. The constraint may also functionally relate 
the parameters of tasks A and B as well as specify 
preconditions as to when it applies.  

Plan Database—contains the plan being executed and is 
responsible for automated sub-goaling of tasks, i.e., 
determining the set of sub-tasks required to achieve a task, 
and for maintaining flexible plans, i.e., the propagation of 
valid task variable domains that are minimally restricted 
without violating a constraint. This has been implemented 
using the EUROPA plan database developed at the NASA 
Ames Research Center. EUROPA is a derivative of the 
model-based, temporally-flexible Remote Agent Plan 
Database described in [4], an earlier version of which was 
demonstrated on Deep Space One [7]. The plan database 
represents a temporal, constraint-based network of tokens 
that defines the past, the present, and flexibly-defined future 
states and actions of the system. Each token represents the 
“state” of a state variable for a period of time and the tasks 
that achieve or determine this state. Each token defines a 
start, end, and duration temporal variable, each with an 
upper and lower bound, as well as the procedure (predicate 
and arguments) invoked when the token is “executed.” The 
plan database supports multiple timelines with constraints 
on and between tokens. If none of the constraints are 
violated for a given instantiation of the plan database, the 
database is defined to be consistent. 

Deliberative Planner—schedules outstanding tasks, and the 
related sub-tasks generated by the plan database, as well as 
makes decisions regarding constraining the domains of task 
variables to achieve specified goals during a specified 
period of time. This element is implemented by a variation 
of the Remote Agent Model-based Planner/Scheduler 
described in [4] and as specified by the Intelligent 
Distributed Execution Agent (IDEA) architecture [3]. More 
specifically, the Deliberative Planner (DP) is responsible for 
generating a consistent, flexible plan in the plan database 
given a start and end horizon time bound, an initial state of 
the timelines at the start time, and a set of goals. A flexible 
plan is loosely defined as a set of timelines, each consisting 
of tokens on each timeline, token order constraints that 
prevent overlapping tokens on the same timeline, and token 
procedure variable constraints. Plan flexibility is 
characterized by the set of decisions yet to be made that 
result in a consistent plan. A plan identification function is 
used to determine which of the outstanding decisions must 
be made in order to have a valid plan. The search process 
and decision selection priorities are determined in part by 
user-defined heuristics. Complex plans can require 
considerable computation time. The proper set of heuristics 
can dramatically reduce the time required. The DP is called 
to initialize the plan database and also is called during plan 
execution as specified by the plan being executed. It is 
typically called to plan for a period of significant duration 
sufficiently in the future such that the DP will complete 
prior to the start time of this period, but not so far in the 

future that the initial state at the future start horizon is not 
known with high confidence.  

Reactive Planner—responsible for insuring that the Plan 
Database is in a state such that the tasks to be executed at a 
specified time are unambiguous. It has been implemented as 
described in [3]. In many respects, as implemented the 
Reactive Planner (RP) is very similar to the DP described 
above, although that not need be the case. The salient 
differences between the two planners are: 

• the RP reasons over a shorter, more immediate time 
horizon, typically ending just after the current execution 
time 

• the RP plan identification function is more restrictive so 
decisions that were postponed by the DP must now be 
made; the time allocated for planning is relatively very 
short, typically less than a few seconds, and cannot be 
exceeded without a fault 

• in the event of a plan deliberation or execution failure, the 
RP repairs the plan locally or if necessary generates a 
standby plan to safe the PSA and call the DP. Plan repair 
may be necessary for several reasons including tasks 
completing too late or too early, task return state variables 
posted to the Plan Database make it inconsistent, and new 
tasks have been added to the Plan Database for immediate 
execution that cause a conflict.  
 

Plan Experts—computational procedures, called by a 
planner, that return information used by the planner to make 
planning decisions, typically regarding token variable 
values. For example, a route planner expert is called by 
either the deliberative or reactive planner to determine the 
time, route, and energy required to move between two 
points in the environment or to cover a certain space. The 
route planner expert has access to a global map that can be 
updated with sensed obstacles. A route plan request is 
typically made by the deliberative planner as part of 
developing the initial plan, but may also be called by the 
reactive planner to develop an alternate route if necessary, 
e.g., the route is blocked or there is insufficient energy to 
complete the current plan. In addition, a user may initiate a 
request to answer a hypothetical question about a particular 
goal.  

Plan Runner (command sequencer)—executes tokens in the 
plan database at the appropriate time. Executing a token 
involves calling the procedure with its arguments defined by 
the token, updating the plan database with the token return 
values when the procedure terminates, constraining the plan 
database so that planners only have limited ability to change 
the past, and calling the Reactive Planner, as described 
above, as needed to update the plan database. The plan 
runner implemented is described in more depth in [3]. 

State Estimator—abstracts and infers a consistent set of state 
variables with respect to a system model given the discrete 
and continuous sensor data provided over time. Some of 
these state variables, such as the health of a sensor, may not 
be directly measurable. To accomplish this we are using the 
model-based L2 state estimation system, which is based on 
algorithms described in [5] and is an extension of the 



Livingstone system that was a component of the Remote 
Agent [7]. In certain instances it may be necessary to infer 
that a sensor is not healthy in order to achieve a set of state 
values that are consistent with the system model. In other 
cases it may be necessary to collect additional data to 
disambiguate between conflicting possible inferences for 
given sensor data. 

Goal/Dialogue Manager—acts as an arbiter between the 
autonomous control system and other agents, including 
people. It retains state regarding its interaction with the 
other agents, e.g., recalls the subject of a previous sentence 
spoken by the user. As an arbiter, this element serves two 
roles: a goal manager and a dialogue manager. The goal 
manager essentially acts as a meta-planner for the 
deliberative planner. As stated above, the deliberative 
planner requires a start and end horizon time bounds, an 
initial state of the timelines at the start time, and a set of 
goals. The goal manager interacts with the user to determine 
this information. This may include negotiation of goals 
when all goals are not achievable or supporting mixed-
initiative planning for hypothetical situations. The dialogue 
manager is responsible for acting as an intelligent interface 
with other agents. When interacting with people, it can 
converse with a person speaking a restricted natural 
language, responding as appropriate to spoken commands 
and queries. It inserts, changes or removes tokens in the 
Plan Database or responds to user queries by querying the 
planner experts and Plan Database. Currently, the integrated 
Dialogue Manager is simplistic. A more sophisticated 
dialogue manager tested on a stand-alone simulator is 
presented in [8]. The integration of such a dialogue manager 
remains as future work. 

Off-board User Interface System 
The user-interface system enables the user to interact with 
the PSA by commanding and displaying information. It 
provides situational awareness, sensor-data views, plan 
views, and commanding capabilities. This includes 
interfaces for interactively creating and modifying the plan 
as well as teleoperation. Our intent is for this interface to 
support operation at various autonomy levels that can be 
dynamically changed and range from teleoperation to high-
level autonomous control. 

Voice Recognition and Synthesis—provides speech-to-text 
and text-to-speech conversions. The voice recognition 
subsystem essentially converts an audio signal into a parsed 
text stream. Conversely, the voice synthesis subsystem 
essentially converts text commanded by the Dialogue 
Manager or the Plan Runner into speech via the user headset 
or remote speakers. We use commercial products to 
accomplish these tasks and plan to upgrade them as 
improvements are made.  

Teleoperation Manager—executes supported user 
commands and converts GUI-generated commands into 
commands executable by the Autonomy system, e.g., plan 
editing. Also, it supports two force-feedback 3-DOF 
joysticks or one 6-DOF joystick for teleoperation in 
position, velocity, or acceleration modes. 

Crew GUI—displays the sensor data, renders the PSA in a 
3D model of its environment, displays plans, provides plan 
editors for both PSA task and path plans, and provides for 
direct commanding of the PSA. Included in the displayed 
sensor data is the real-time video stream generated by the 
PSA. In addition, by using a camera mounted on the Crew 
GUI display, the Crew GUI supports teleconferencing. 

Summary 
We presented the ongoing research and development effort 
to design an adjustably autonomous control system for an 
internal spacecraft free-flying robot prototype, which is also 
applicable to a wide range of free-flying vehicles. We 
described a PSA prototype as well as its micro-gravity test 
facility. We discussed adjustable autonomy and the 
autonomy framework for intelligent flight vehicle control 
being developed. A sample mission scenario being used to 
test the prototype and the autonomous control system was 
also outlined. 

Acknowledgements 
We gratefully acknowledge the contributions of the many 

talented people on and supporting the PSA team. In 
addition, we acknowledge the support provided by the 
NASA Cross-Enterprise Technology Development 
Program, the Computing, Information, and Technology 
Program, and the Engineering Complex Systems Program. 

References 
[1] Smith, David E., Frank, Jeremy, and Jonsson, Ari K., “Bridging 
the gap between planning and scheduling.” Knowledge 
Engineering Review, 15(1):47-83, Cambridge University Press, 
UK, 2000. 
[2] Gregory A. Dorais and Yuri Gawdiak, “The Personal Satellite 
Assistant: an internal spacecraft mobile monitor.” Procs. of the 
IEEE Aerospace Conference, Big Sky, MT, 2003. 
[3] Nicola Muscettola et al., “A unified approach to model-based 
planning and execution.” Procs. of the Sixth International 
Conference on Intelligent Autonomous Systems, Venice, Italy, 
2000.  
[4] Ari K. Jonsson, et al., “Planning in interplanetary space: theory 
and practice.” Procs. of the 5th Artificial Intelligence Planning and 
Scheduling Conference, Breckenridge, CO, 2000. 
[5] James Kurien and P. Pandurang Nayak, “Back to the future 
with consistency-based trajectory tracking.” Procs. of the 17th 
National Conference on Artificial Intelligence, Austin, TX, 2000. 
[6] Gregory A. Dorais, et al., “An autonomous control system for 
an intra-vehicular spacecraft mobile monitor prototype.” Procs. of 
the 7th International Symposium on Artificial Intelligence, 
Robotics, and Automation in Space, Nara, Japan, 2003. 
[7] Douglas Bernard, et al., “Final report on the Remote Agent 
experiment.” Procs. of the New Millennium Program DS-1 
Technology Validation Symposium, Pasadena, CA, Feb. 8-9, 2000. 
[8] Manny Rayner, Beth Ann Hockey, and Frankie James, “A 
compact architecture for dialogue management based on scripts 
and meta-outputs.” Procs. of Applied Natural Language 
Processing (ANLP), 2000. 


